Powered by RND
PodcastsTechnologyThe POWER Podcast

The POWER Podcast

POWER
The POWER Podcast
Latest episode

Available Episodes

5 of 201
  • 199. Powering Taiwan’s Future: Inside the Award-Winning Sun Ba II Power Plant
    Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness. This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner. “That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast. Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.” The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.” Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit. “This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.” Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.
    --------  
    27:19
  • 198. Advocating for Public Power Companies: LPPC Focuses on Load Growth, FEMA Reform, and Tax-Exempt Bonds
    Public power utilities are community-owned, not-for-profit electric utilities that deliver reliable, low-cost electricity to about 2,000 communities serving more than 55 million Americans. Among the cities served by public power utilities are Austin, Texas; Nashville, Tennessee; Los Angeles, California; Jacksonville, Florida; and Seattle, Washington. The Large Public Power Council (LPPC) is the voice of large public power in Washington, D.C. It advocates for policies that enable members to build critical energy infrastructure, power the growth of the economy, and provide affordable and reliable electricity to millions of Americans. The LPPC’s members are 29 of the largest public power systems in the nation. Together, they serve 30.5 million consumers across 23 states and territories. Tom Falcone, president of the LPPC, noted that all power companies, whether publicly owned, cooperatives, or investor-owned utilities (IOUs), are in the same business, that is, to reliably deliver electricity to customers. The big difference is that public power companies are accountable at home. “We’re publicly owned. We are not-for-profit. We are community oriented. We’re mission oriented. And so, our real goal, and only goal in life, is reliable, affordable power—sustainable power—back home at the least cost to customers,” Falcone said as a guest on The POWER Podcast. “So, we’re not necessarily looking to grow loads or grow earnings, unless that’s favorable to our community, unless we’re meeting the needs of our community or lowering costs for them.” Public power companies face many of the same concerns as co-ops and IOUs. One of the biggest challenges today is rapid load growth, driven by data centers, artificial intelligence (AI), and the increasing electrification of manufacturing and transportation. “The biggest thing is that the load is arriving faster and lumpier, and in a more concentrated fashion, than it has in the past,” explained Falcone. “Historically, when somebody new came to town, they wanted, you know, 5 MW, or maybe they were really large and they wanted 100 MW,” said Falcone. “But what we have today is folks who come to town and they want a GW, which is enough to power probably 600,000 homes, depending on what part of the country you’re in.” Falcone said about half of LPPC’s members are seeing this very, very rapid growth. “They could double over the next 10 years,” he said. While the demand for the energy is very immediate, utilities’ ability to build infrastructure is not. “We have to go through the same permitting and public processes, and construction and supply chain, and it just doesn’t allow us to build quite that fast,” Falcone reported.
    --------  
    28:58
  • 197. Debunking Nuclear Power’s Biggest Misconceptions and Why It’s Needed Today
    Despite nuclear power’s unmatched ability to produce reliable, carbon-free energy at scale, it is often dismissed by clean energy advocates in favor of renewable resources like wind and solar. Cost arguments and public misconceptions around safety and radioactive waste have kept it out of many mainstream climate strategies. But as Tim Gregory argues in his new book Going Nuclear: How Atomic Energy Will Save the World, this exclusion may be the greatest obstacle to achieving net zero goals. In fact, Gregory says in his book “net zero is impossible without nuclear power.” “Claiming renewables on their own are enough to replace fossil fuels is underestimating the challenge of achieving net zero,” Gregory said as a guest on The POWER Podcast. “Fossil fuels have basically defined the world order for the last couple of centuries, and to think that we can replace them with wind power and solar power, which are fundamentally tied to the whims of the weather, and the rotation of the planet in the case of solar, is really underestimating the scale of the challenge,” he said. “We need power that comes in enormous quantities exactly where we need it and when we need it,” Gregory continued. “I don’t want to live in a world without solar panels or wind turbines, but to think that they can do it on their own, I think, is honestly naive. We need something that’s reliable to compensate for the intermittence of renewables, and nuclear power would be absolutely perfect for that.” Notably, innovative companies and many government leaders around the world are backing nuclear power projects. “Big tech in North America has really cottoned on to these small modular reactors,” said Gregory. “Meta, Google, Microsoft, and Amazon are all going to be using small modular reactors to power their data centers. … This isn’t just a pipe dream—this is actually happening now in real time. … It’s been very, very encouraging watching that unfold.” Public perceptions on nuclear power are also trending in a positive direction, and the movement seems to be bipartisan. “It’s very, very encouraging that more than half of people in the UK either strongly support or tend to support nuclear power. Strong opposition to nuclear power, according to the latest poll, is actually below 10%,” Gregory reported. “As such, the two major political parties in the UK—that’s the Labor Party, which is kind of our left leaning party, and the Conservative Party, which is our right leaning party—they both support the massive expansion of nuclear power, which is really, really nice actually. It’s maybe something that both sides of the political spectrum can agree on.” The same is true in the U.S., where both Democrats and Republicans have gotten behind nuclear power. A case in point is the Accelerating Deployment of Versatile, Advanced Nuclear for Clean Energy (ADVANCE) Act, which was signed into law in July 2024. It passed with overwhelming bipartisan support in the Senate with a vote of 88–2, and in the House of Representatives with a vote of 393–13. “If your politics has you more concerned with environmental stewardship, and climate change, and phasing out fossil fuels, and getting rid of oil from the energy system, then nuclear power is for you. But then at the same time, if your politics has you perhaps more leaning towards economic growth, and the economy, and prosperity, and all that kind of thing, then nuclear power is for you as well, because it provides the energy that enables that economic growth,” Gregory said. “And so, it’s actually very, very encouraging to see that, at least in most countries, nuclear power is not a partisan issue, which is all too rare in the world these days.”
    --------  
    32:41
  • 196. Building ChatGPT for the Power Industry: EPRI Leads the Way
    More than 100 of the world’s largest energy companies are betting that artificial intelligence (AI) will revolutionize how electricity gets made, moved, and managed. But they’re not waiting for Silicon Valley to build it for them—they’ve taken matters into their own hands through an EPRI-led consortium. That initiative is the Open Power AI Consortium, which EPRI launched in March 2025 to drive the development and deployment of an open AI model tailored for the power sector. According to its mission statement, the Open Power AI Consortium “aims to evolve the electric sector by leveraging advanced AI technologies to innovate the way electricity is made, moved, and used by customers. By fostering collaboration among industry leaders, researchers, and technology providers, the consortium will drive the development and deployment of cutting-edge AI solutions tailored to enhance operational efficiencies, increase resiliency and reliability, deploy emerging and sustainable technologies, and reduce costs while improving the customer experience.” “We’re really looking at building an ecosystem to accelerate the development and deployment, and recognizing that, while AI is advancing rapidly, the energy industry has its own unique needs, especially around reliability, safety, regulatory compliance, and so forth. So, the consortium provides a collaborative platform to develop and maintain domain-specific AI models—think a ChatGPT tailored to the energy industry—as well as sharing best practices, testing innovative solutions in a secure environment, and long term, we believe this will help modernize the grid, improve customer experiences, and support global safe, affordable, and reliable energy for everyone,” Jeremy Renshaw, executive director for AI and Quantum with EPRI, said as a guest on The POWER Podcast. Among the consortium’s members are some of the largest energy companies in the world, including Constellation, Con Edison, Duke Energy, EDF, Korea Electric Power Corp. (KEPCO), New York Power Authority (NYPA), Pacific Gas and Electric Co. (PG&E), Saudi Electricity Co., Southern Company, Southern California Edison, Taiwan Power Co., and Tennessee Valley Authority (TVA). It also includes entities like Amazon Web Servies (AWS), Burns and McDonnell, GE Vernova, Google, Gulf Cooperation Council (GCC) Interconnection Authority, Korea Hydro and Nuclear Power (KHNP), Khalifa University, Microsoft, Midcontinent Independent System Operator (MISO), PJM, Rolls-Royce SMR, and Westinghouse Electric Co. “For many years, the power industry has been somewhat siloed, and there were not many touch points or communication between global utilities, technology companies, universities, and so forth. So, this consortium aims to facilitate making new connections between these important and impactful organizations to increase collaboration and information sharing that will benefit everyone,” Renshaw explained. EPRI, together with Articul8 and NVIDIA, has already developed the first set of domain-specific generative AI models for electric and power systems aimed at advancing the energy transformation. Although the technology has not been released publicly, it will be made available soon as an NVIDIA NIM microservice for early access. This development sets the foundation for more to come.
    --------  
    32:53
  • 195. Power Grid Security in the AI Era: Why Energy Dominance and Cybersecurity Can’t Be Separated
    In a special edition of The POWER Podcast, released in collaboration with the McCrary Institute’s Cyber Focus podcast, POWER’s executive editor, Aaron Larson, and Frank Cilluffo, director of the McCrary Institute for Cyber and Critical Infrastructure Security and Professor of Practice at Auburn University, discuss the evolving power grid and cybersecurity challenges. Specifically, they highlight the shift taking place from centralized power stations to more distributed energy resources, including solar farms and wind turbines. The conversation touches on the importance of a reliable power grid and the need to protect critical infrastructure. “From a national security standpoint, from an economic standpoint, from a public safety standpoint, if you don’t have power, all these other systems are somewhat irrelevant,” Cilluffo said. “There’s no infrastructure more critical than power.” Cilluffo noted that artificial intelligence (AI) is requiring increasingly more power, which can’t be ignored. “If we want to be AI dominant, we can’t do that if we’re not energy dominant,” said Cilluffo. “The two are in inextricably interwoven—hand in glove. And if you start looking at where the country wants to be technologically, if we want to lead, we really need to continue to double down, triple down, and look at all sorts of sources of energy as well.” While renewables are clearly leading when it comes to new generation being added to the grid today, emerging technologies including small modular reactors, fusion power, deep dry-rock geothermal, and space-based solar power, are on the horizon, promising potentially game-changing energy options. “And not to put a fine point on it, but you mentioned so many different forms of energy, and I’m reminded of the old test, the A, B, C, or D, all of the above. This sounds like it is clearly an all of the above,” Cilluffo proposed. Meanwhile, the enormous energy buildout in China was discussed. China is not just leading, but truly dominating the world in the construction of wind, solar, nuclear, coal, and energy storage projects in 2025, both in terms of capacity and projects under development. This leadership is evident across all five sectors, frequently accounting for the majority, or at least a plurality, of new global construction and installation. “China is a primary focus of a lot of our [Cyber Focus] podcast discussion, but it’s a race we cannot afford to lose, whether it’s around AI, quantum. And, I think you’re spot on; to get there, they recognize the need to really quadruple down on energy,” said Cilluffo. “I still think that we [the U.S.] want to be at the vanguard driving all of this.” And while it’s widely known that cybersecurity is critically important to energy systems, it’s often not prioritized the way it should be. “Everyone needs to be cyber aware, cyber informed,” Cilluffo said. “These are issues that we have to invest in. It can’t be an afterthought. It has to be something that everyone thinks through. And the reality is, don’t think it’s someone else’s problem: a) it’s all of our problems, and b) don’t think that it can be looked at after the balloon goes up—you need to be thinking all of this well in advance.”
    --------  
    35:02

More Technology podcasts

About The POWER Podcast

The POWER Podcast provides listeners with insight into the latest news and technology that is poised to affect the power industry. POWER’s Executive Editor Aaron Larson conducts interviews with leading industry experts and gets updates from insiders at power-related conferences and events held around the world.
Podcast website

Listen to The POWER Podcast, TED Radio Hour and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

The POWER Podcast: Podcasts in Family

Social
v7.23.11 | © 2007-2025 radio.de GmbH
Generated: 11/2/2025 - 10:23:44 PM