你有没有想过,AI是如何“思考”的?本期节目,我们将深入AI的大脑,看看几篇最新论文如何揭示它独特的学习与创造策略。我们会发现,AI不仅能通过一张“未来地图”预知结果,也懂得在创新时避免“摸鱼”;它解决难题有时不靠推理,而是靠“澄清”;它甚至告诉我们,通往智慧的道路,有时恰恰是那扇最窄的门。准备好了吗?让我们一起探索AI的思考术!
00:00:33 让AI听话,需要一本什么样的“未来地图”?
00:05:02 AI搞科研,是“卷王”还是“摸鱼”?
00:10:38 高手解决问题,靠的不是推理,是“澄清”
00:16:57 通往正确答案的窄门
00:22:14 AI的成长捷径,死记硬背不如学会“串门”
本文介绍的几篇论文:
[LG] Meta Flow Maps enable scalable reward alignment
[University of Oxford]
https://arxiv.org/abs/2601.14430
---
[CL] Towards Execution-Grounded Automated AI Research
[Stanford University]
https://arxiv.org/abs/2601.14525
---
[LG] Diffusion Large Language Models for Black-Box Optimization
[McGill & MILA - Quebec AI Institute]
https://arxiv.org/abs/2601.14446
---
[CL] The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models
[Tsinghua University]
https://arxiv.org/abs/2601.15165
---
[LG] Knowledge Graphs are Implicit Reward Models: Path-Derived Signals Enable Compositional Reasoning
[Princeton University]
https://arxiv.org/abs/2601.15160