这一期,我们将一起探索AI如何学习几项“反直觉”的超能力。比如,我们如何像侦探一样,在万亿词汇的海洋中,通过“剪枝”的智慧揪出隐藏的线索?我们还会发现,造出一台好用的机器人,关键可能不是发明,而是像“攒电脑”一样集成;而一个更聪明的AI,核心竟然是学会清晰地认知“我不行”,并懂得何时“求助”。最后,我们会看到机器人如何在自己的“想象”中完成上万次试错,以及AI如何通过一次精准的“器官移植”手术,变得又轻又强。准备好了吗?让我们即刻出发!
00:00:42 你的每一次搜索,都在塑造AI的未来
00:06:52 造一台好机器人,关键可能不是“发明”,而是“攒”
00:12:00 聪明人的新技能,知道何时该“求助”
00:16:38 机器人怎样才能“脑补”出成功?
00:22:13 AI瘦身指南,聪明,原来不必那么“重”
本期介绍的几篇论文:
[CL] SoftMatcha 2: A Fast and Soft Pattern Matcher for Trillion-Scale Corpora
[University of Tokyo & Kyoto University & Graduate University for Advanced Studie]
https://arxiv.org/abs/2602.10908
---
[RO] YOR: Your Own Mobile Manipulator for Generalizable Robotics
[New York University]
https://arxiv.org/abs/2602.11150
---
[CL] LaCy: What Small Language Models Can and Should Learn is Not Just a Question of Loss
[Apple]
https://arxiv.org/abs/2602.12005
---
[RO] RISE: Self-Improving Robot Policy with Compositional World Model
[The Chinese University of Hong Kong & Kinetix AI]
https://arxiv.org/abs/2602.11075
---
[LG] Retrieval-Aware Distillation for Transformer-SSM Hybrids
[CMU]
https://arxiv.org/abs/2602.11374