PodcastsTechnologyAI可可AI生活

AI可可AI生活

fly51fly
AI可可AI生活
Latest episode

831 episodes

  • AI可可AI生活

    [人人能懂] 重塑AI:从“玩”世界、“管”团队到“问”问题

    02/2/2026 | 29 mins.
    你是否想过,AI不仅能让你“看电影”,还能让你亲自走进画面里“玩世界”?你是否好奇,AI如何像笔迹专家一样,通过分析你鼠标的微小轨迹,就揪出游戏里的作弊玩家?本期节目,我们将一同见证AI的几场关键进化:看它如何从一个不靠谱的助理,变身成懂得主动提问的神队友;如何从一个全能大脑,分化成一个分工明确的数据分析团队;以及,如何通过精准的“抽脂”手术,在学习之初就剔除掉那些我们不希望它掌握的知识。准备好了吗?让我们即刻出发!
    00:00:40 从“看电影”到“玩世界”,AI的下一站是什么?
    00:07:25 你瞄准的动作,出卖了你
    00:13:27 让AI学会提问,不靠谱的助理如何变身神队友?
    00:18:42 给你的生意,请一个AI数据分析团队
    00:23:51 AI“减肥”新思路,如何实现精准“抽脂”?
    本期介绍的几篇论文:
    [CV] Advancing Open-source World Models
    [Robbyant Team]
    https://arxiv.org/abs/2601.20540
    ---
    [LG] XGuardian: Towards Explainable and Generalized AI Anti-Cheat on FPS Games
    [The University of Hong Kong]
    https://arxiv.org/abs/2601.18068
    ---
    [LG] Teaching LLMs to Ask: Self-Querying Category-Theoretic Planning for Under-Specified Reasoning
    [Stanford University]
    https://arxiv.org/abs/2601.20014
    ---
    [CL] Insight Agents: An LLM-Based Multi-Agent System for Data Insights
    [Amazon]
    https://arxiv.org/abs/2601.20048
    ---
    [LG] Shaping capabilities with token-level data filtering
    [Anthropic]
    https://arxiv.org/abs/2601.21571
  • AI可可AI生活

    [人人能懂] AI进化论:从“外包大脑”到“偷懒”的智慧

    31/1/2026 | 30 mins.
    今天我们来聊一个有点“扎心”又特别重要的话题。AI这根“拐杖”,会不会让我们忘了怎么走路?当我们把思考和决策悄悄“外包”给AI时,到底谁说了算?最新论文用实验揭示,我们的大脑可能真的在“生锈”。但别担心,我们也会看到AI自身的进化——科学家们正教它学会像人脑一样“偷懒”,甚至给它配了个“教练”,让它从“大力出奇迹”迈向“聪明地使劲”。这期节目,我们一起看看AI如何改变我们,以及我们如何让AI变得更聪明。
    00:00:38 AI这根“拐杖”,正在让你忘了怎么走路吗?
    00:07:08 大模型有个“天生缺陷”,我们该如何修复它?
    00:13:47 我们的大脑,正在悄悄外包吗?
    00:19:09 AI大模型,能不能学学人脑的“偷懒”智慧?
    00:25:25 AI训练,如何从「大力出奇迹」到「聪明地使劲」?
    本期介绍的几篇论文:
    [AI] How AI Impacts Skill Formation
    [Anthropic]
    https://arxiv.org/abs/2601.20245
    ---
    [CL] Zonkey: A Hierarchical Diffusion Language Model with Differentiable Tokenization and Probabilistic Attention
    [A Rozental]
    https://arxiv.org/abs/2601.21768
    ---
    [AI] Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
    [Anthropic & ACS Research Group & University of Toronto]
    https://arxiv.org/abs/2601.19062
    ---
    [LG] Resonant Sparse Geometry Networks
    [University of Arkansa]
    https://arxiv.org/abs/2601.18064
    ---
    [LG] Value-Based Pre-Training with Downstream Feedback
    [CMU]
    https://arxiv.org/abs/2601.22108
  • AI可可AI生活

    [人人能懂] AI的五项修炼:挂挡、瘦身、听风、量尺、育苗

    30/1/2026 | 32 mins.
    我们总在惊叹AI变得多聪明,但你有没有想过,我们该如何从根基上,打造一个学得更快、身形更巧、感知更敏锐、评价更科学,甚至能自我进化的AI呢?本期节目,我们将通过五篇最新的AI论文,一次性揭开这些秘密。我们会聊聊AI学习速度原来只有四个“档位”;探讨如何给大模型“减肥”却不牺牲效果;见证AI如何拥有“听声辨位”的超能力;学习如何给眼花缭乱的AI科学地“排座次”;最后,我们还会看到一个“博士生”AI是如何手把手教出一个更聪明的“小学生”AI的。准备好了吗?让我们即刻出发,探索AI的底层构造蓝图。
    00:00:45 人工智能学习的速度,原来只有四档
    00:07:40 AI减肥记,如何不花钱还把活干好?
    00:13:35 AI的“听声辨位”,我们离《三体》里的智子还有多远?
    00:19:43 给AI大模型排座次,你信的榜单可能用错了尺子
    00:26:35 让AI自己教自己,我们如何从根上培养一个更聪明的模型?
    本期介绍的几篇论文:
    [LG] A Theory of Universal Agnostic Learning
    [Purdue University & Technion and Google Research]
    https://arxiv.org/abs/2601.20961
    ---
    [CL] ECO: Quantized Training without Full-Precision Master Weights
    [Google Research & ISTA]
    https://arxiv.org/abs/2601.22101
    ---
    [AS] PhaseCoder: Microphone Geometry-Agnostic Spatial Audio Understanding for Multimodal LLMs
    [Google DeepMind & Google AR]
    https://arxiv.org/abs/2601.21124
    ---
    [LG] Nonparametric LLM Evaluation from Preference Data
    [LMU Munich & CMU & University of Cambridge]
    https://arxiv.org/abs/2601.21816
    ---
    [CL] Self-Improving Pretraining: using post-trained models to pretrain better models
    [FAIR at Meta]
    https://arxiv.org/abs/2601.21343
  • AI可可AI生活

    [人人能懂] AI如何持续学习、保持诚实并从错误中成长

    29/1/2026 | 27 mins.
    今天我们来聊聊AI的“内心世界”:我们找到了那把能解锁所有学习方法的“万能钥匙”,却也发现AI的“人格”竟会随着对话见风使舵。我们试图让它像生物一样“进化”,却不小心让它患上了“灾难性遗忘症”。面对越来越强的AI,我们这些“菜鸟裁判”又该如何确保它的诚实?最后,我们会发现,让AI飞速成长的秘诀,可能不是好评,而是一份详尽的“错误报告”。
    00:00:32 人工智能的“万能钥匙”藏在哪?
    00:06:34 AI的“人格”,为什么聊着聊着就变了?
    00:11:47 AI的“进化”陷阱,为什么学得越多,忘得越快?
    00:16:47 菜鸟裁判,如何拿捏顶尖高手?
    00:21:48 差评,好评,不如一份详细的“错误报告”
    本期介绍的几篇论文:
    [LG] Spectral Ghost in Representation Learning: from Component Analysis to Self-Supervised Learning
    [Google DeepMind & Harvard University]
    https://arxiv.org/abs/2601.20154
    ---
    [CL] Linear representations in language models can change dramatically over a conversation
    [Google DeepMind]
    https://arxiv.org/abs/2601.20834
    ---
    [LG] Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
    [UC Berkeley]
    https://arxiv.org/abs/2601.20861
    ---
    [LG] Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction
    [UC Berkeley]
    https://arxiv.org/abs/2601.20299
    ---
    [LG] Reinforcement Learning via Self-Distillation
    [ETH Zurich]
    https://arxiv.org/abs/2601.20802
  • AI可可AI生活

    [人人能懂] AI如何预测、评判、塑造和超越自我?

    28/1/2026 | 31 mins.
    今天我们不聊AI又在哪项测试里拿了第一,而是要深入AI的“内心世界”,探讨几个更根本的问题。我们能否像一位老道的教师一样,精准预测一个AI模型的未来潜力?当AI学生比裁判更聪明时,我们看到的排行榜还有意义吗?甚至,AI在学习解题时,会不会被悄悄植入“思想钢印”,学会一些它本不该知道的东西?本期节目,我们将从几篇最新论文出发,一起探索AI如何审视、学习和超越自我。
    00:00:35 AI算命师,我们能预测模型的未来吗?
    00:06:34 你的第一名,可能只是因为裁判不够格
    00:11:47 AI世界的“思想钢印”,一份免费午餐背后的隐秘风险
    00:17:45 高手过招,用“抽象”这把万能钥匙开锁
    00:24:00 AI的“中年危机”,如何持续学习不掉队?
    本期介绍的几篇论文:
    [LG] Neural Neural Scaling Laws
    [New York University]
    https://arxiv.org/abs/2601.19831
    ---
    [LG] Benchmarks Saturate When The Model Gets Smarter Than The Judge
    [Vrije Universiteit Brussel]
    https://arxiv.org/abs/2601.19532
    ---
    [LG] Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models
    [Northeastern University & University of Cambridge & Google DeepMind]
    https://arxiv.org/abs/2601.19061
    ---
    [LG] Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers
    [CMU & Shanghai Jiao Tong University & NVIDIA]
    https://arxiv.org/abs/2601.19092
    ---
    [LG] Self-Distillation Enables Continual Learning
    [MIT & ETH Zurich]
    https://arxiv.org/abs/2601.19897

More Technology podcasts

About AI可可AI生活

来自 @爱可可-爱生活 的第一手AI快报,用最简单易懂的语言,带你直击最前沿的人工智能科研动态。无论你是科技小白,还是行业达人,这里都有你想知道的AI故事和未来趋势。跟着我们,轻松解锁人工智能的无限可能! #人工智能 #科技前沿
Podcast website

Listen to AI可可AI生活, All-In with Chamath, Jason, Sacks & Friedberg and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v8.4.0 | © 2007-2026 radio.de GmbH
Generated: 2/2/2026 - 11:25:42 PM