PodcastsNewsQuantum Research Now

Quantum Research Now

Inception Point Ai
Quantum Research Now
Latest episode

265 episodes

  • Quantum Research Now

    IBM Bets Big on Quantum Healthcare and AI: SQK QodeX Funding Signals Computing Revolution

    20/2/2026 | 3 mins.
    This is your Quantum Research Now podcast.

    Hello, quantum pioneers, and welcome to Quantum Research Now. I'm Leo, your Learning Enhanced Operator, diving straight into the quantum storm that's electrifying the field right now.

    Picture this: just two days ago, on February 18, IBM Ventures dropped a bombshell, investing in SQK and QodeX Quantum—two trailblazers from the Duality accelerator in Chicago. SQK, out of Seattle, is wielding hybrid quantum-classical algorithms to revolutionize medical imaging, like sharpening blurry X-rays into crystal-clear diagnostics for cancer and heart disease. QodeX, right here in the Windy City, is forging quantum-native AI that could supercharge machine learning, turning data deluges into instant foresight. According to IBM's announcement, this isn't just cash—it's mentorship, Qiskit access, and ties to their Quantum System Two slated for Illinois' Quantum Park. It's quantum software igniting real-world fire.

    What does this mean for computing's future? Think of classical computers as diligent librarians flipping through one book at a time. Quantum ones? They're like a thousand monkeys with typewriters, but synchronized in superposition, trying every page simultaneously until Shakespeare's perfect sonnet emerges. SQK's imaging tricks noise like a fog lifting over the Rockies, revealing hidden tumors faster than ever. QodeX's AI? Imagine your GPS not just plotting routes but predicting traffic jams across parallel universes of data. These investments bridge the chasm from lab curiosities to industry game-changers, accelerating fault-tolerant quantum machines that crunch drug discoveries in hours, not years.

    Let me paint the scene from my last lab session at Inception Point. The air hums with cryogenic chill, -459°F whispers from dilution fridges housing superconducting qubits. I peer through the viewport: iridescent niobium loops pulse with microwave zaps, entanglement blooming like fireflies in a digital night. We're chasing Majorana qubits, those topological marvels decoded just days ago by CSIC and Delft teams. Picture them as safe-deposit boxes split across town—hack one, the other's untouched. Using quantum capacitance, they read parity in real-time, coherence stretching milliseconds. It's like finally eavesdropping on Schrödinger's cat without collapsing the box.

    This surge—from IBM's bets to Majorana reads and Xanadu's photonic push with Tower Semiconductor yesterday—feels like 1926's transistor dawn, but warp-speed. Everyday chaos mirrors it: stock markets entangled like qubits, politics in superposition until votes collapse the wavefunction. We're not just computing; we're rewriting reality's code.

    Thanks for joining me on Quantum Research Now. Got questions or hot topics? Email [email protected]—we'll quantum-leap them on air. Subscribe now, and remember, this is a Quiet Please Production. For more, visit quietplease.ai. Stay entangled, friends.

    For more http://www.quietplease.ai

    Get the best deals https://amzn.to/3ODvOta

    This content was created in partnership and with the help of Artificial Intelligence AI
  • Quantum Research Now

    Infleqtion Goes Public: How Neutral Atoms Just Made Quantum Computing Real with NASA and NVIDIA

    18/2/2026 | 3 mins.
    This is your Quantum Research Now podcast.

    # Quantum Research Now Podcast Script

    Welcome back to Quantum Research Now. I'm Leo, your Learning Enhanced Operator, and I'm thrilled to dive into what might be the most pivotal moment in quantum computing commercialization we've seen all year.

    Yesterday, something extraordinary happened. Infleqtion, a neutral-atom quantum company, became the first of its kind to go public on the New York Stock Exchange under the ticker INFQ. This isn't just another tech IPO. This is the quantum industry growing up right before our eyes.

    Let me paint you a picture of what neutral atoms actually are. Imagine you're trying to build the world's tiniest computer using individual atoms suspended in space, held in place by precisely tuned laser beams. That's neutral atom quantum computing. These atoms are isolated from interference, scalable, and economical—which is exactly why Infleqtion founder Matthew Kinsella believes they represent the best path toward practical quantum technology.

    The company raised over 550 million dollars in this public offering, and they're already deploying real systems with NASA, the U.S. Army, and the U.K. government. Think about that for a moment. We're not talking about laboratory experiments anymore. These quantum computers are actively solving problems in the real world.

    One announcement particularly captures the audacity of what's happening: Infleqtion is collaborating with NASA on a mission supported by more than 20 million dollars in contracted funding to fly the world's first quantum gravity sensor into space. A quantum gravity sensor. This device measures gravitational fields with extraordinary precision using quantum principles. It's like upgrading from a compass to a GPS system, except we're measuring the very fabric of spacetime.

    But Infleqtion isn't working alone. They're collaborating with NVIDIA on materials science applications using logical qubits. Meanwhile, other breakthroughs are accelerating simultaneously. Researchers at Delft University and the Spanish National Research Council have finally cracked one of quantum computing's most stubborn challenges: reading Majorana qubits. These are topological qubits, protected qubits that store information distributed across two quantum states rather than concentrated in one location. It's like having a backup copy of your data stored in two separate places simultaneously—corrupt one, and the information survives.

    These convergent breakthroughs signal that quantum computing is transitioning from theoretical promise to commercial reality. We're not decades away anymore. We're here. The infrastructure is being built. The partnerships are forming. The funding is flowing.

    This is an extraordinary time to be watching quantum technology unfold.

    Thank you so much for joining me on Quantum Research Now. If you have questions or topics you'd like us to explore on air, send an email to leo at inceptionpoint dot ai. Please subscribe to Quantum Research Now for more episodes just like this one. This has been a Quiet Please Production. For more information, visit quietplease dot ai.

    For more http://www.quietplease.ai

    Get the best deals https://amzn.to/3ODvOta

    This content was created in partnership and with the help of Artificial Intelligence AI
  • Quantum Research Now

    Majorana Qubits Unlocked: How Delft's Single-Shot Readout Just Cracked Topological Quantum Computing

    16/2/2026 | 3 mins.
    This is your Quantum Research Now podcast.

    Imagine this: a whisper from the quantum realm, echoing across labs in Delft, finally cracking open the vault of Majorana qubits. Hello, I'm Leo, your Learning Enhanced Operator, diving into the heart of quantum breakthroughs on Quantum Research Now.

    Just days ago, on February 11th, QuTech at Delft University of Technology and Spain's CSIC unveiled single-shot parity readout for a minimal Kitaev chain, published in Nature. Picture it—I'm there in the cryostat's chill, the air humming with liquid helium's faint hiss, superconducting wires glowing under faint blue LEDs. These researchers built a Lego-like nanostructure: two semiconductor quantum dots bridged by a superconductor, birthing Majorana zero modes—MZMs. These exotic quasiparticles live at the edges, their quantum info smeared non-locally, like a secret shared across a crowded room, immune to local eavesdroppers.

    The magic? Traditional charge sensors went blind—charge-neutral MZMs don't trip them. But quantum capacitance, via an RF resonator tuned to the superconductor's Cooper pair dance, sensed the global parity: even or odd, 0 or 1. In one shot, real-time, with coherence over a millisecond—random parity jumps flickering like fireflies in the dark. Co-author Francesco Zatelli calls it the missing "measurement primitive" for protected qubits.

    This isn't sci-fi; it's the topological roadmap Microsoft champions, post their 2025 Majorana 1 chip. Why headlines today? Delta Gold's fresh Penn State deal funds gold nanostructures for qubits, echoing Kitaev's promise, while Infleqtion preps NYSE trading February 17th. Quantum 2.0 markets, per ResearchAndMarkets, explode from $3 billion this year to $50 billion by 2036.

    Think analogies: Classical bits are lonely light switches, on or off. Qubits superposition like a coin spinning mid-air—heads, tails, both. But Majoranas? They're braided ghosts, fusing info in knots that decoherence can't untie. It's like upgrading from a bicycle lock to a bank vault where the combination floats in the ether, readable only holistically. This readout means scalable chains, fault-tolerant logic, millions of qubits. Finance? Portfolio storms simulated in seconds. Drugs? Protein folds unraveled overnight. Defense? Unbreakable keys.

    We're not there yet—error correction, cooling wars loom—but this flips the script. Quantum's dawn breaks, dramatic as entanglement's spooky action, linking distant particles like global allies in crisis.

    Thanks for joining me, listeners. Questions or topic ideas? Email [email protected]. Subscribe to Quantum Research Now, a Quiet Please Production—more at quietplease.ai. Stay quantum-curious.

    (Word count: 428)

    For more http://www.quietplease.ai

    Get the best deals https://amzn.to/3ODvOta

    This content was created in partnership and with the help of Artificial Intelligence AI
  • Quantum Research Now

    Cracking RSA with 100K Qubits: How Iceberg Quantum's Pinnacle Just Shrunk the Encryption Threat Timeline

    15/2/2026 | 3 mins.
    This is your Quantum Research Now podcast.

    Imagine this: a whisper from the quantum realm, fragile as a snowflake in a blizzard, suddenly amplified into a roar that could shatter encryption walls. Hello, I'm Leo, your Learning Enhanced Operator, diving deep into the heart of quantum frontiers on Quantum Research Now.

    Just days ago, on February 12th, Iceberg Quantum out of Sydney unveiled Pinnacle, their fault-tolerant architecture that's rewriting the qubit playbook. MarketBeat spotlighted IonQ, D-Wave, and Quantum Computing Inc. for surging trading volumes on the 14th, but Iceberg stole the show with a $6 million seed round from LocalGlobe, Blackbird, and DCVC. They're wielding quantum LDPC codes—low-density parity-check, think of them as super-efficient error-correcting spells—to slash the qubit count needed to crack RSA-2048 from millions to under 100,000. That's like shrinking a skyscraper demolition crew from a thousand workers to a crack team of ninety, still toppling the tower.

    Picture me in the dim glow of a cryostat lab, the air humming with the chill of liquid helium at 4 Kelvin, superconducting wires pulsing like veins in a digital beast. Pinnacle partners with heavyweights like PsiQuantum's photonics wizards, Diraq's spin qubits, and IonQ's trapped ions—folks projecting hardware at this scale in three to five years. This isn't hype; it's validated simulation, per their preprint, solving the infamous overhead problem where noisy qubits demanded endless backups.

    Let me paint the quantum dance: qubits aren't classical bits flipping 0 to 1 like light switches. They're superpositioned ghosts, entangled in spooky correlations Einstein hated, collapsing under measurement. Traditional error correction bloated systems, but LDPC codes weave a lighter net, trapping errors like fishermen spotting ripples without drowning in nets. It's dramatic—fault tolerance surges, paving roads to utility-scale machines for drug discovery, where molecules fold like origami puzzles, or optimization ripping through logistics snarls faster than rush-hour traffic dissolving in a wormhole.

    This ties to QuTech's February 11th Nature bombshell: single-shot parity readout on a minimal Kitaev chain of Majorana zero modes. Using quantum capacitance via RF resonators, they peeked inside topological vaults without disturbing the treasure—millisecond coherence, Lego-like scalability. Echoes Iceberg's push: fault-tolerant cores scaling to millions, Microsoft's dream validated.

    Quantum's no longer a distant mirage; it's cresting, fueled by VC floods as Bloomberg noted on the 13th. Everyday parallels? Your phone's GPS entangled with satellites, or AI training exploding like neural fireworks—quantum supercharges it all.

    Thanks for tuning in, listeners. Got questions or topics? Email [email protected]. Subscribe to Quantum Research Now, and this has been a Quiet Please Production—for more, check quietplease.ai. Stay quantum-curious.

    (Word count: 448; Character count: 3397)

    For more http://www.quietplease.ai

    Get the best deals https://amzn.to/3ODvOta

    This content was created in partnership and with the help of Artificial Intelligence AI
  • Quantum Research Now

    Euro-Q-Exa Launch: Why Europe's Quantum Computer Marks a New Era in Tech Sovereignty

    13/2/2026 | 3 mins.
    This is your Quantum Research Now podcast.

    # Quantum Research Now: The European Quantum Revolution

    Hello, I'm Leo, and welcome to Quantum Research Now. Today we're discussing something that genuinely excites me—Europe just launched a quantum computer that could reshape how we think about technological sovereignty.

    This morning, Europe inaugurated Euro-Q-Exa, a groundbreaking quantum system developed by IQM Quantum Computers and deployed in Germany through the European High Performance Computing Joint Undertaking. But here's what makes this moment extraordinary: this isn't just another quantum machine. This is Europe saying, "We're not waiting for Silicon Valley or Beijing to define our digital future."

    Let me paint you a picture of why this matters. Imagine quantum computing as a master locksmith who can try millions of key combinations simultaneously rather than sequentially. Classical computers—the ones on your desk—must test combinations one by one. Quantum computers harness superposition, allowing them to explore vast solution spaces in parallel. That's the raw power we're talking about.

    IQM specializes in superconducting full-stack quantum computers, and they've been raising serious capital—over 600 million dollars to date. What's brilliant about their strategy is integration. They're actively partnering with Nvidia to weave quantum capabilities directly into existing computing infrastructure. This isn't quantum in isolation; it's quantum working hand-in-hand with the GPUs and CPUs that power modern AI and machine learning.

    The symbolism here is profound. When Europe invests in quantum infrastructure, it's not just about raw computational power. It's about intellectual independence, security, and maintaining a seat at the table in what's genuinely shaping up as a three-way technological race between the United States, China, and Europe. Without sovereign quantum capabilities, nations risk depending on foreign technology for their most critical applications—from cryptography to drug discovery to financial systems.

    Consider what's happening in parallel. According to a recent Quantum Readiness Report conducted among industry experts including those from the European Union, companies are moving beyond hype. They're demanding reliable results, verifiable progress, and clear economic benefits. The market is shifting from promises to performance. Forty-three percent of respondents expect quantum computers to gain practical advantages in selected applications within five years.

    This is the turning point we're witnessing. Euro-Q-Exa represents infrastructure. But more importantly, it represents commitment. Europe is building the foundational systems necessary for the quantum revolution that's already underway.

    Thanks for joining me on Quantum Research Now. If you have questions or topics you'd like discussed, email leo at inceptionpoint dot ai. Please subscribe to Quantum Research Now, and remember this has been a Quiet Please Production. For more information, visit quietplease dot AI.

    For more http://www.quietplease.ai

    Get the best deals https://amzn.to/3ODvOta

    This content was created in partnership and with the help of Artificial Intelligence AI

More News podcasts

About Quantum Research Now

This is your Quantum Research Now podcast.Quantum Research Now is your daily source for the latest updates in quantum computing. Dive into groundbreaking research papers, discover breakthrough methods, and explore novel algorithms and experimental results. Our expert analysis highlights potential commercial applications, making this podcast essential for anyone looking to stay ahead in the rapidly evolving field of quantum technology. Tune in daily to stay informed and inspired by the future of computing.For more info go to https://www.quietplease.aiCheck out these deals https://amzn.to/48MZPjs
Podcast website

Listen to Quantum Research Now, Heather du Plessis-Allan Drive and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

Quantum Research Now: Podcasts in Family

Social
v8.6.0 | © 2007-2026 radio.de GmbH
Generated: 2/22/2026 - 3:24:09 AM